Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Emerg Microbes Infect ; 11(1): 438-441, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1662090

ABSTRACT

Mucosal immunity provides a potential for preventing initial infection and stopping subsequent transmission of SARS-CoV-2. Here, we examined the safety and immunogenicity of a replication-defective adenovirus type-5 vectored vaccine (Ad5-nCov) encoding SARS-CoV-2 spike protein delivered by nebulization inhalation in rhesus macaques. The vaccine-associated clinical pathology and toxicity were not observed in the NHP model. The extensive safety study indicated that Ad5-nCoV was mainly confined to the organs related to respiratory system and was rapidly cleared away from the system. Our results showed that Ad5-nCoV delivered by inhalation robustly elicited both systematic and mucosal immune responses against SARS-nCoV-2 and variants. Thus, Ad5-nCoV inhalation may provide an effective, safe and non-invasive vaccination strategy for the control of SARS-CoV-2.


Subject(s)
Adenoviridae/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Genetic Vectors/immunology , Immunity, Mucosal , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adenoviridae/genetics , Administration, Inhalation , Animals , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Disease Models, Animal , Genetic Vectors/genetics , Humans , Immunogenicity, Vaccine , Macaca mulatta , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/genetics
2.
Nat Med ; 28(2): 401-409, 2022 02.
Article in English | MEDLINE | ID: covidwho-1655605

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and the waning of vaccine-elicited neutralizing antibodies suggests that additional coronavirus disease 2019 (COVID-19) vaccine doses may be needed for individuals who initially received CoronaVac. We evaluated the safety and immunogenicity of the recombinant adenovirus type 5 (AD5)-vectored COVID-19 vaccine Convidecia as a heterologous booster versus those of CoronaVac as homologous booster in adults previously vaccinated with CoronaVac in an ongoing, randomized, observer-blinded, parallel-controlled phase 4 trial ( NCT04892459 ). Adults who had received two doses of CoronaVac in the past 3-6 months were vaccinated with Convidecia (n = 96) or CoronaVac (n = 102). Adults who had received one dose of CoronaVac in the past 1-3 months were also vaccinated with Convidecia (n = 51) or CoronaVac (n = 50). The co-primary endpoints were the occurrence of adverse reactions within 28 d after vaccination and geometric mean titers (GMTs) of neutralizing antibodies against live wild-type SARS-CoV-2 virus at 14 d after booster vaccination. Adverse reactions after vaccination were significantly more frequent in Convidecia recipients but were generally mild to moderate in all treatment groups. Heterologous boosting with Convidecia elicited significantly increased GMTs of neutralizing antibody against SARS-CoV-2 than homologous boosting with CoronaVac in participants who had previously received one or two doses of CoronaVac. These data suggest that heterologous boosting with Convidecia following initial vaccination with CoronaVac is safe and more immunogenic than homologous boosting.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Adenoviridae/immunology , Adolescent , Adult , COVID-19/immunology , COVID-19/prevention & control , China , Female , Humans , Immunization, Secondary , Immunoglobulin G/blood , Injection Site Reaction/pathology , Male , Middle Aged , T-Lymphocytes/immunology , Vaccination , Vaccines, Inactivated/immunology , Young Adult
3.
Sci Immunol ; 6(66): eabi8635, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1467663

ABSTRACT

SARS-CoV-2 has caused a global pandemic that has infected more than 250 million people worldwide. Although several vaccine candidates have received emergency use authorization, there is still limited knowledge on how vaccine dosing affects immune responses. We performed mechanistic studies in mice to understand how the priming dose of an adenovirus-based SARS-CoV-2 vaccine affects long-term immunity to SARS-CoV-2. We first primed C57BL/6 mice with an adenovirus serotype 5 vaccine encoding the SARS-CoV-2 spike protein, similar to that used in the CanSino and Sputnik V vaccines. The vaccine prime was administered at either a standard dose or 1000-fold lower dose, followed by a boost with the standard dose 4 weeks later. Initially, the low dose prime induced lower immune responses relative to the standard dose prime. However, the low dose prime elicited immune responses that were qualitatively superior and, upon boosting, exhibited substantially more potent recall and functional capacity. We also report similar effects with a simian immunodeficiency virus (SIV) vaccine. These findings show an unexpected advantage of fractionating vaccine prime doses, warranting a reevaluation of vaccine trial protocols for SARS-CoV-2 and other pathogens.


Subject(s)
COVID-19 Vaccines/immunology , Immunogenicity, Vaccine , Adenoviridae/genetics , Adenoviridae/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/chemistry , Dose-Response Relationship, Immunologic , Female , Genetic Vectors , Male , Mice , Mice, Inbred C57BL
4.
Int J Mol Sci ; 22(19)2021 Oct 06.
Article in English | MEDLINE | ID: covidwho-1457948

ABSTRACT

Novel coronavirus SARS-CoV-2 has resulted in a global pandemic with worldwide 6-digit infection rates and thousands of death tolls daily. Enormous efforts are undertaken to achieve high coverage of immunization to reach herd immunity in order to stop the spread of SARS-CoV-2 infection. Several SARS-CoV-2 vaccines based on mRNA, viral vectors, or inactivated SARS-CoV-2 virus have been approved and are being applied worldwide. However, the recent increased numbers of normally very rare types of thromboses associated with thrombocytopenia have been reported, particularly in the context of the adenoviral vector vaccine ChAdOx1 nCoV-19 from Astra Zeneca. The statistical prevalence of these side effects seems to correlate with this particular vaccine type, i.e., adenoviral vector-based vaccines, but the exact molecular mechanisms are still not clear. The present review summarizes current data and hypotheses for molecular and cellular mechanisms into one integrated hypothesis indicating that coagulopathies, including thromboses, thrombocytopenia, and other related side effects, are correlated to an interplay of the two components in the vaccine, i.e., the spike antigen and the adenoviral vector, with the innate and immune systems, which under certain circumstances can imitate the picture of a limited COVID-19 pathological picture.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Thrombocytopenia/etiology , Thrombosis/etiology , Adenoviridae/immunology , Animals , COVID-19/immunology , COVID-19 Vaccines/immunology , ChAdOx1 nCoV-19 , Genetic Vectors/adverse effects , Genetic Vectors/immunology , Humans , Purpura, Thrombocytopenic, Idiopathic/etiology , Purpura, Thrombocytopenic, Idiopathic/immunology , Spike Glycoprotein, Coronavirus/adverse effects , Thrombocytopenia/immunology , Thrombosis/immunology , Vaccination/adverse effects
5.
Viruses ; 13(7)2021 07 01.
Article in English | MEDLINE | ID: covidwho-1448932

ABSTRACT

Infection has recently started receiving greater attention as an unusual causative/inducing factor of obesity. Indeed, the biological plausibility of infectobesity includes direct roles of some viruses to reprogram host metabolism toward a more lipogenic and adipogenic status. Furthermore, the probability that humans may exchange microbiota components (virome/virobiota) points out that the altered response of IFN and other cytokines, which surfaces as a central mechanism for adipogenesis and obesity-associated immune suppression, is due to the fact that gut microbiota uphold intrinsic IFN signaling. Last but not least, the adaptation of both host immune and metabolic system under persistent viral infections play a central role in these phenomena. We hereby discuss the possible link between adenovirus and obesity-related nonalcoholic fatty liver disease (NAFLD). The mechanisms of adenovirus-36 (Ad-36) involvement in hepatic steatosis/NAFLD consist in reducing leptin gene expression and insulin sensitivity, augmenting glucose uptake, activating the lipogenic and pro-inflammatory pathways in adipose tissue, and increasing the level of macrophage chemoattractant protein-1, all of these ultimately leading to chronic inflammation and altered lipid metabolism. Moreover, by reducing leptin expression and secretion Ad-36 may have in turn an obesogenic effect through increased food intake or decreased energy expenditure via altered fat metabolism. Finally, Ad-36 is involved in upregulation of cAMP, phosphatidylinositol 3-kinase, and p38 signaling pathways, downregulation of Wnt10b expression, increased expression of CCAAT/enhancer binding protein-beta, and peroxisome proliferator-activated receptor gamma 2 with consequential lipid accumulation.


Subject(s)
Inflammation , Lipid Metabolism , Non-alcoholic Fatty Liver Disease/complications , Obesity/etiology , Obesity/virology , Adenoviridae/immunology , Adenoviridae Infections/complications , Adenoviridae Infections/immunology , Animals , Diet, High-Fat , Glucose/metabolism , Humans , Lipogenesis , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/virology , Obesity/complications , Obesity/immunology , Signal Transduction
6.
Blood ; 138(22): 2256-2268, 2021 12 02.
Article in English | MEDLINE | ID: covidwho-1443788

ABSTRACT

SARS-CoV-2 vaccine ChAdOx1 nCoV-19 (AstraZeneca) causes a thromboembolic complication termed vaccine-induced immune thrombotic thrombocytopenia (VITT). Using biophysical techniques, mouse models, and analysis of VITT patient samples, we identified determinants of this vaccine-induced adverse reaction. Super-resolution microscopy visualized vaccine components forming antigenic complexes with platelet factor 4 (PF4) on platelet surfaces to which anti-PF4 antibodies obtained from VITT patients bound. PF4/vaccine complex formation was charge-driven and increased by addition of DNA. Proteomics identified substantial amounts of virus production-derived T-REx HEK293 proteins in the ethylenediaminetetraacetic acid (EDTA)-containing vaccine. Injected vaccine increased vascular leakage in mice, leading to systemic dissemination of vaccine components known to stimulate immune responses. Together, PF4/vaccine complex formation and the vaccine-stimulated proinflammatory milieu trigger a pronounced B-cell response that results in the formation of high-avidity anti-PF4 antibodies in VITT patients. The resulting high-titer anti-PF4 antibodies potently activated platelets in the presence of PF4 or DNA and polyphosphate polyanions. Anti-PF4 VITT patient antibodies also stimulated neutrophils to release neutrophil extracellular traps (NETs) in a platelet PF4-dependent manner. Biomarkers of procoagulant NETs were elevated in VITT patient serum, and NETs were visualized in abundance by immunohistochemistry in cerebral vein thrombi obtained from VITT patients. Together, vaccine-induced PF4/adenovirus aggregates and proinflammatory reactions stimulate pathologic anti-PF4 antibody production that drives thrombosis in VITT. The data support a 2-step mechanism underlying VITT that resembles the pathogenesis of (autoimmune) heparin-induced thrombocytopenia.


Subject(s)
Antigen-Antibody Complex/immunology , Autoantibodies/immunology , COVID-19/prevention & control , Capsid Proteins/adverse effects , ChAdOx1 nCoV-19/adverse effects , Drug Contamination , Genetic Vectors/adverse effects , HEK293 Cells/immunology , Immunoglobulin G/immunology , Platelet Factor 4/immunology , Purpura, Thrombocytopenic, Idiopathic/etiology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/adverse effects , Adenoviridae/immunology , Animals , Antigen-Antibody Complex/ultrastructure , Autoantibodies/biosynthesis , Capillary Leak Syndrome/etiology , Capsid Proteins/immunology , Cell Line, Transformed , ChAdOx1 nCoV-19/chemistry , ChAdOx1 nCoV-19/immunology , ChAdOx1 nCoV-19/toxicity , Dynamic Light Scattering , Epitopes/chemistry , Epitopes/immunology , Extracellular Traps/immunology , Extravasation of Diagnostic and Therapeutic Materials/etiology , Genetic Vectors/immunology , HEK293 Cells/chemistry , Humans , Imaging, Three-Dimensional , Immunoglobulin G/biosynthesis , Inflammation , Mice , Microscopy/methods , Platelet Activation , Proteomics , Purpura, Thrombocytopenic, Idiopathic/blood , Purpura, Thrombocytopenic, Idiopathic/immunology , Sinus Thrombosis, Intracranial/diagnostic imaging , Sinus Thrombosis, Intracranial/immunology , Spike Glycoprotein, Coronavirus/immunology , Virus Cultivation
7.
Viruses ; 13(7)2021 07 02.
Article in English | MEDLINE | ID: covidwho-1378449

ABSTRACT

Adenovirus-based vectors are playing an important role as efficacious genetic vaccines to fight the current COVID-19 pandemic. Furthermore, they have an enormous potential as oncolytic vectors for virotherapy and as vectors for classic gene therapy. However, numerous vector-host interactions on a cellular and noncellular level, including specific components of the immune system, must be modulated in order to generate safe and efficacious vectors for virotherapy or classic gene therapy. Importantly, the current widespread use of Ad vectors as vaccines against COVID-19 will induce antivector immunity in many humans. This requires the development of strategies and techniques to enable Ad-based vectors to evade pre-existing immunity. In this review article, we discuss the current status of genetic and chemical capsid modifications as means to modulate the vector-host interactions of Ad-based vectors.


Subject(s)
Adenoviridae/genetics , COVID-19/prevention & control , Capsid/chemistry , Adenoviridae/immunology , COVID-19/immunology , COVID-19/therapy , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Genes, Viral , Genetic Vectors , Humans , Immunity , Oncolytic Virotherapy/methods , Pandemics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification
8.
J Korean Med Sci ; 36(31): e223, 2021 Aug 09.
Article in English | MEDLINE | ID: covidwho-1360701

ABSTRACT

Vaccination with an adenoviral vector vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can result in the rare development of thrombosis with thrombocytopenia mediated by platelet-activating antibodies against platelet factor 4 (PF4). This is a life-threating condition that may be accompanied by bleeding due to thrombocytopenia with thrombosis of the cerebral venous sinus or splanchnic vein. Herein, we describe the first fatal case of thrombosis with thrombocytopenia syndrome in Korea, presenting with intracranial hemorrhage caused by cerebral venous sinus thrombosis. A 33-year-old Korean man received the first dose of the ChAdOx1 nCoV-19 vaccination. He developed severe headache with vomiting 9 days after the vaccination. Twelve days after vaccination, he was admitted to the hospital with neurological symptoms and was diagnosed with cerebral venous sinus thrombosis, which was accompanied by intracranial hemorrhage. Thrombocytopenia and D-dimer elevation were observed, and the result of the PF4 enzyme-linked immunosorbent assay antibody test was reported to be strongly positive. Despite intensive treatment, including intravenous immunoglobulin injection and endovascular mechanical thrombectomy, the patient died 19 days after vaccination. Physicians need to be aware of thrombosis with thrombocytopenia syndrome (TTS) in adenoviral vector-vaccinated patients. Endovascular mechanical thrombectomy might be a useful therapeutic option for the treatment of TTS with cerebral venous sinus thrombosis.


Subject(s)
COVID-19 Vaccines/adverse effects , Cerebral Hemorrhage/mortality , Cerebral Hemorrhage/pathology , Thrombocytopenia/pathology , Thrombosis/pathology , Adenoviridae/immunology , Adult , COVID-19/immunology , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Humans , Male , Platelet Factor 4/antagonists & inhibitors , Platelet Factor 4/immunology , Republic of Korea , SARS-CoV-2/immunology , Thrombosis/mortality , Vaccination/adverse effects
9.
J Cardiovasc Med (Hagerstown) ; 23(2): 71-74, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1348429

ABSTRACT

Currently, the world is coping with the COVID-19 pandemic with a few vaccines. So far, the European Medicine Agency has approved four of them. However, following widespread vaccination with the recombinant adenoviral vector-based Oxford-AstraZeneca vaccine, available only in the United Kingdom and Europe, many concerns have emerged, especially the report of several cases of the otherwise rare cerebral sinus vein thrombosis and splanchnic vein thrombosis. The onset of thrombosis particularly at these unusual sites, about 5--14 days after vaccination, along with thrombocytopenia and other specific blood test abnormalities, are the main features of the vaccine side effects. The acronym vaccine-induced prothrombotic immune thrombocytopenia (VIPIT) has been coined to name this new condition, with the aim of highlighting the difference from the classic heparin-induced thrombocytopenia (HIT). VIPIT seems to primarily affect young to middle-aged women. For this reason, the vaccine administration has been stopped or limited in a few European countries. Coagulopathy induced by the Oxford-AstraZeneca vaccine (and probably by Janssen/Johnson & Johnson vaccine as well in the USA) is likely related to the use of recombinant vector DNA adenovirus, as experimentally proven in animal models. Conversely, Pfizer and Moderna vaccines use mRNA vectors. All vaccine-induced thrombotic events should be treated with a nonheparin anticoagulant. As the condition has some similarities with HIT, patients should not receive any heparin or platelet transfusion, as these treatments may potentially worsen the clinical course. Aspirin has limited rational use in this setting and is not currently recommended. Intravenous immunoglobulins may represent another potential treatment, but, most importantly, clinicians need to be aware of this new unusual postvaccination syndrome.


Subject(s)
ChAdOx1 nCoV-19/adverse effects , Intracranial Thrombosis/etiology , Purpura, Thrombocytopenic, Idiopathic/etiology , Ad26COVS1/adverse effects , Adenoviridae/immunology , Humans
12.
Cell ; 184(13): 3467-3473.e11, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1252548

ABSTRACT

We previously reported that a single immunization with an adenovirus serotype 26 (Ad26)-vector-based vaccine expressing an optimized SARS-CoV-2 spike (Ad26.COV2.S) protected rhesus macaques against SARS-CoV-2 challenge. To evaluate reduced doses of Ad26.COV2.S, 30 rhesus macaques were immunized once with 1 × 1011, 5 × 1010, 1.125 × 1010, or 2 × 109 viral particles (vp) Ad26.COV2.S or sham and were challenged with SARS-CoV-2. Vaccine doses as low as 2 × 109 vp provided robust protection in bronchoalveolar lavage, whereas doses of 1.125 × 1010 vp were required for protection in nasal swabs. Activated memory B cells and binding or neutralizing antibody titers following vaccination correlated with protective efficacy. At suboptimal vaccine doses, viral breakthrough was observed but did not show enhancement of disease. These data demonstrate that a single immunization with relatively low dose of Ad26.COV2.S effectively protected against SARS-CoV-2 challenge in rhesus macaques, although a higher vaccine dose may be required for protection in the upper respiratory tract.


Subject(s)
Adenoviridae/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Female , Immunogenicity, Vaccine/immunology , Immunologic Memory/immunology , Macaca mulatta , Male , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods
13.
Ann Intern Med ; 174(5): 585-594, 2021 05.
Article in English | MEDLINE | ID: covidwho-1248392

ABSTRACT

BACKGROUND: Zika virus (ZIKV) may cause severe congenital disease after maternal-fetal transmission. No vaccine is currently available. OBJECTIVE: To assess the safety and immunogenicity of Ad26.ZIKV.001, a prophylactic ZIKV vaccine candidate. DESIGN: Phase 1 randomized, double-blind, placebo-controlled clinical study. (ClinicalTrials.gov: NCT03356561). SETTING: United States. PARTICIPANTS: 100 healthy adult volunteers. INTERVENTION: Ad26.ZIKV.001, an adenovirus serotype 26 vector encoding ZIKV M-Env, administered in 1- or 2-dose regimens of 5 × 1010 or 1 × 1011 viral particles (vp), or placebo. MEASUREMENTS: Local and systemic adverse events; neutralization titers by microneutralization assay (MN50) and T-cell responses by interferon-γ enzyme-linked immunospot and intracellular cytokine staining; and protectivity of vaccine-induced antibodies in a subset of participants through transfer in an exploratory mouse ZIKV challenge model. RESULTS: All regimens were well tolerated, with no safety concerns identified. In both 2-dose regimens, ZIKV neutralizing titers peaked 14 days after the second vaccination, with geometric mean MN50 titers (GMTs) of 1065.6 (95% CI, 494.9 to 2294.5) for 5 × 1010 vp and 956.6 (595.8 to 1535.8) for 1 × 1011 vp. Titers persisted for at least 1 year at a GMT of 68.7 (CI, 26.4-178.9) for 5 × 1010 vp and 87.0 (CI, 29.3 to 258.6) for 1 × 1011 vp. A 1-dose regimen of 1 × 1011 vp Ad26.ZIKV.001 induced seroconversion in all participants 56 days after the first vaccination (GMT, 103.4 [CI, 52.7 to 202.9]), with titers persisting for at least 1 year (GMT, 90.2 [CI, 38.4 to 212.2]). Env-specific cellular responses were induced. Protection against ZIKV challenge was observed after antibody transfer from participants into mice, and MN50 titers correlated with protection in this model. LIMITATION: The study was conducted in a nonendemic area, so it did not assess safety and immunogenicity in a flavivirus-exposed population. CONCLUSION: The safety and immunogenicity profile makes Ad26.ZIKV.001 a promising candidate for further development if the need reemerges. PRIMARY FUNDING SOURCE: Janssen Vaccines and Infectious Diseases.


Subject(s)
Viral Vaccines/immunology , Zika Virus Infection/prevention & control , Adenoviridae/immunology , Adult , Animals , Double-Blind Method , Female , Humans , Male , Mice , United States , Zika Virus/immunology , Zika Virus Infection/immunology
14.
J Exp Med ; 218(7)2021 07 05.
Article in English | MEDLINE | ID: covidwho-1205513

ABSTRACT

Safe and effective coronavirus disease-19 (COVID-19) vaccines are urgently needed to control the ongoing pandemic. While single-dose vaccine regimens would provide multiple advantages, two doses may improve the magnitude and durability of immunity and protective efficacy. We assessed one- and two-dose regimens of the Ad26.COV2.S vaccine candidate in adult and aged nonhuman primates (NHPs). A two-dose Ad26.COV2.S regimen induced higher peak binding and neutralizing antibody responses compared with a single dose. In one-dose regimens, neutralizing antibody responses were stable for at least 14 wk, providing an early indication of durability. Ad26.COV2.S induced humoral immunity and T helper cell (Th cell) 1-skewed cellular responses in aged NHPs that were comparable to those in adult animals. Aged Ad26.COV2.S-vaccinated animals challenged 3 mo after dose 1 with a SARS-CoV-2 spike G614 variant showed near complete lower and substantial upper respiratory tract protection for both regimens. Neutralization of variants of concern by NHP sera was reduced for B.1.351 lineages while maintained for the B.1.1.7 lineage independent of Ad26.COV2.S vaccine regimen.


Subject(s)
Adenoviridae/immunology , Aging/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Body Temperature , Bronchoalveolar Lavage , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/prevention & control , COVID-19/virology , Dose-Response Relationship, Immunologic , Female , Immunity, Humoral , Kinetics , Lung/pathology , Lung/virology , Macaca mulatta , Male , Spike Glycoprotein, Coronavirus/metabolism , Treatment Outcome , Vaccination , Viral Load
15.
Mol Ther ; 29(8): 2412-2423, 2021 08 04.
Article in English | MEDLINE | ID: covidwho-1199134

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the emergent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global public health, and there is an urgent need to develop safe and effective vaccines. Here, we report the generation and the preclinical evaluation of a novel replication-defective gorilla adenovirus-vectored vaccine encoding the pre-fusion stabilized Spike (S) protein of SARS-CoV-2. We show that our vaccine candidate, GRAd-COV2, is highly immunogenic both in mice and macaques, eliciting both functional antibodies that neutralize SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and a robust, T helper (Th)1-dominated cellular response. We show here that the pre-fusion stabilized Spike antigen is superior to the wild type in inducing ACE2-interfering, SARS-CoV-2-neutralizing antibodies. To face the unprecedented need for vaccine manufacturing at a massive scale, different GRAd genome deletions were compared to select the vector backbone showing the highest productivity in stirred tank bioreactors. This preliminary dataset identified GRAd-COV2 as a potential COVID-19 vaccine candidate, supporting the translation of the GRAd-COV2 vaccine in a currently ongoing phase I clinical trial (ClinicalTrials.gov: NCT04528641).


Subject(s)
Adenoviridae/immunology , Adenovirus Vaccines/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Gorilla gorilla/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Cell Line, Tumor , Female , Genetic Vectors/immunology , Gorilla gorilla/virology , HEK293 Cells , HeLa Cells , Humans , Macaca , Male , Mice , Mice, Inbred BALB C , Middle Aged , Pandemics/prevention & control , Young Adult
16.
Eur J Immunol ; 51(7): 1774-1784, 2021 07.
Article in English | MEDLINE | ID: covidwho-1151899

ABSTRACT

Optimal vaccines are needed for sustained suppression of SARS-CoV-2 and other novel coronaviruses. Here, we developed a recombinant type 5 adenovirus vector encoding the gene for the SARS-CoV-2 S1 subunit antigen (Ad5.SARS-CoV-2-S1) for COVID-19 immunization and evaluated its immunogenicity in mice. A single immunization with Ad5.SARS-CoV-2-S1 via S.C. injection or I.N delivery induced robust antibody and cellular immune responses. Vaccination elicited significant S1-specific IgG, IgG1, and IgG2a endpoint titers as early as 2 weeks, and the induced antibodies were long lasting. I.N. and S.C. administration of Ad5.SARS-CoV-2-S1 produced S1-specific GC B cells in cervical and axillary LNs, respectively. Moreover, I.N. and S.C. immunization evoked significantly greater antigen-specific T-cell responses compared to unimmunized control groups with indications that S.C. injection was more effective than I.N. delivery in eliciting cellular immune responses. Mice vaccinated by either route demonstrated significantly increased virus-specific neutralization antibodies on weeks 8 and 12 compared to control groups, as well as BM antibody forming cells (AFC), indicative of long-term immunity. Thus, this Ad5-vectored SARS-CoV-2 vaccine candidate showed promising immunogenicity following delivery to mice by S.C. and I.N. routes of administration, supporting the further development of Ad-based vaccines against COVID-19 and other infectious diseases for sustainable global immunization programs.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adenoviridae/genetics , Adenoviridae/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology , Vaccination
18.
Int J Mol Sci ; 22(5)2021 Feb 28.
Article in English | MEDLINE | ID: covidwho-1120219

ABSTRACT

Adenovirus-based gene transfer vectors are the most frequently used vector type in gene therapy clinical trials to date, and they play an important role as genetic vaccine candidates during the ongoing SARS-CoV-2 pandemic. Immediately upon delivery, adenovirus-based vectors exhibit multiple complex vector-host interactions and induce innate and adaptive immune responses. This can severely limit their safety and efficacy, particularly after delivery through the blood stream. In this review article we summarize two strategies to modulate Ad vector-induced immune responses: extensive genomic and chemical capsid modifications. Both strategies have shown beneficial effects in a number of preclinical studies while potential synergistic effects warrant further investigations.


Subject(s)
Adenoviridae/genetics , Adenoviridae/immunology , Capsid/immunology , Genetic Vectors/genetics , Genetic Vectors/immunology , Animals , COVID-19 , COVID-19 Vaccines/immunology , Capsid Proteins/genetics , Humans , Immunity , Immunogenicity, Vaccine , SARS-CoV-2/genetics , SARS-CoV-2/immunology
19.
J Virol ; 95(9)2021 04 12.
Article in English | MEDLINE | ID: covidwho-1102152

ABSTRACT

Current influenza vaccines, live attenuated or inactivated, do not protect against antigenically novel influenza A viruses (IAVs) of pandemic potential, which has driven interest in the development of universal influenza vaccines. Universal influenza vaccine candidates targeting highly conserved antigens of IAV nucleoprotein (NP) are promising as vaccines that induce T cell immunity, but concerns have been raised about the safety of inducing robust CD8 T cell responses in the lungs. Using a mouse model, we systematically evaluated effects of recombinant adenovirus vectors (rAd) expressing IAV NP (A/NP-rAd) or influenza B virus (IBV) NP (B/NP-rAd) on pulmonary inflammation and function after vaccination and following live IAV challenge. After A/NP-rAd or B/NP-rAd vaccination, female mice exhibited robust systemic and pulmonary vaccine-specific B cell and T cell responses and experienced no morbidity (e.g., body mass loss). Both in vivo pulmonary function testing and lung histopathology scoring revealed minimal adverse effects of intranasal rAd vaccination compared with unvaccinated mice. After IAV challenge, A/NP-rAd-vaccinated mice experienced significantly less morbidity, had lower pulmonary virus titers, and developed less pulmonary inflammation than unvaccinated or B/NP-rAd-vaccinated mice. Based on analysis of pulmonary physiology using detailed testing not previously applied to the question of T cell damage, mice protected by vaccination also had better lung function than controls. Results provide evidence that, in this model, adenoviral universal influenza vaccine does not damage pulmonary tissue. In addition, adaptive immunity, in particular, T cell immunity in the lungs, does not cause damage when restimulated but instead mitigates pulmonary damage following IAV infection.IMPORTANCE Respiratory viruses can emerge and spread rapidly before vaccines are available. It would be a tremendous advance to use vaccines that protect against whole categories of viruses, such as universal influenza vaccines, without the need to predict which virus will emerge. The nucleoprotein (NP) of influenza virus provides a target conserved among strains and is a dominant T cell target. In animals, vaccination to NP generates powerful T cell immunity and long-lasting protection against diverse influenza strains. Concerns have been raised, but not evaluated experimentally, that potent local T cell responses might damage the lungs. We analyzed lung function in detail in the setting of such a vaccination. Despite CD8 T cell responses in the lungs, lungs were not damaged and functioned normally after vaccination alone and were protected upon subsequent infection. This precedent provides important support for vaccines based on T cell-mediated protection, currently being considered for both influenza and SARS-CoV-2 vaccines.


Subject(s)
Adenoviridae , Genetic Vectors , Influenza B virus , Influenza Vaccines , Lung , Orthomyxoviridae Infections , Adenoviridae/genetics , Adenoviridae/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Disease Models, Animal , Female , Genetic Vectors/genetics , Genetic Vectors/immunology , Immunity, Cellular , Influenza B virus/genetics , Influenza B virus/immunology , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Lung/immunology , Lung/pathology , Lung/virology , Mice , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/prevention & control , T-Lymphocytes/immunology , T-Lymphocytes/pathology
20.
Science ; 371(6528): 521-526, 2021 01 29.
Article in English | MEDLINE | ID: covidwho-1093836

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are innate sensors of viruses and can augment early immune responses and contribute to protection. We hypothesized that MAIT cells may have inherent adjuvant activity in vaccine platforms that use replication-incompetent adenovirus vectors. In mice and humans, ChAdOx1 (chimpanzee adenovirus Ox1) immunization robustly activated MAIT cells. Activation required plasmacytoid dendritic cell (pDC)-derived interferon (IFN)-α and monocyte-derived interleukin-18. IFN-α-induced, monocyte-derived tumor necrosis factor was also identified as a key secondary signal. All three cytokines were required in vitro and in vivo. Activation of MAIT cells positively correlated with vaccine-induced T cell responses in human volunteers and MAIT cell-deficient mice displayed impaired CD8+ T cell responses to multiple vaccine-encoded antigens. Thus, MAIT cells contribute to the immunogenicity of adenovirus vectors, with implications for vaccine design.


Subject(s)
Adenoviridae/immunology , Immunogenicity, Vaccine , Mucosal-Associated Invariant T Cells/immunology , Viral Vaccines/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Genetic Vectors/immunology , Humans , Interferon-alpha/metabolism , Interleukin-18/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL